SIL Calculation Report (Machinery Directive 2006/42/EC)

Client:	LS Industrial Systems Co., Ltd.
Adress:	56, Samsung 4-gil, Mokcheon-eup, Cheonan-si. Chungcheongnam-do 330-845, Korea
Product Name:	LS VARIABLE FREQUENCY DRIVE
Model Name:	SV0008iS7, SV0015iS7, SV0022iS7, SV0037iS7, SV0055iS7, SV0075iS7, SV0110iS7, SV0150iS7, SV0185iS7, SV0220iS7, SV0300iS7, SV0370iS7, SV0450iS7, SV0550iS7, SV0750iS7, SV0900iS7, SV1100iS7, SV1320iS7, SV1600iS7, SV1850iS7, SV2200iS7, SV2800iS7, SV3150iS7, SV3750iS7
Test Engineer:	Edward Cho (010.5096.3839)
SGS File No.	G-44-2017-03891
Technical File No.	Is_ec_20180316111837

EN 61800-5-2:2007 (STO, SIL 2);
EN 62061:2005/A1:2013 (SILCL 2);
Harmonized Standards
EN ISO 13849-1:2015 (PL d, Category 3);
EN 61508-1 (SIL 2);
EN 61508-2 (SIL 2);
EN 60204-1:2006/AC:2010

Safety Division
SGS KOREA CO., LTD.
4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do

1. PURPOSE, SCOPE AND CONDITIONS

1.1. Purpose

SGS KOREA (SGS) have contracted with LS Industrial System Co., Ltd. (LSIS) to certify the iS7 Series. The report summarizes calculation result of SIL, Safety Integrity Level (SIL) and Performance Level (PL) with Category
according to EN 61800-5-2, EN 61508-1, EN 61508-2, EN ISO 13849-1 and EN 62061.

1.2. Scope and Conditions

1) The Report is prepared only for LS VARIABLE FREQUENCY DRIVE SV-iS7 Series
2) Unless otherwise stated in the report, the evaluation applies to electrical circuits and components of STO (Stop Torque Off) and PS/VM (Power Supply/Voltage Monitoring) circuit only
3) If the equipment is modified such that the configuration, components, materials, devices, manufacturing methods,
or system loading is changed, this evaluation will be considered invalid
4) The test report shall not be reproduced without prior written consent of SGS KOREA

1.3. Referenced Standard

EN 61800-5-2:2007
Adjustable Speed Electrical Power Drive Systems, Part 5-2: Safety Requirements - Functional

EN 61508-1:2010

Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems, Part 1: General Requirements

EN 61508-2:2010
Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems
Part 2: Requirements for Electrical/Electronic/Programmable Electronic Safety related Systems

EN 61508-6:2010

Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems
Part 6: Guidelines on the application of IEC 61508-2 and IEC 61508-3

EN ISO 13849-1:2015

Safety of Machinery - Safety-related Parts of Control Systems, Part 1: General Principles for Design

EN ISO 13849-2:2012
Safety of Machinery - Safety-related Parts of Control Systems, Part 1: General Principles for Design

EN 62061:2005/A1:2013
Safety of Machinery - Functional Safety of Safety-related Elctrical, Electronic and Programmable Electronic Control Systems

Safety of Machinery - Electrical Equipment of Machines, Part 1: General Requirements

2. Definitions and Abbreviations

2.1 Abbreviations

1001	1 out of 1 Channel
2002	2 out of 2 Channel
CPLD	Complex Programmable Logic Device
CCF	Common Cause Failure
DC	Diagnostic Coverage
E/E/PE	Electrical/Electronic/Programmable Electronic
FIT	Failure In Time (10^{-9})
FMEA	Failure Modes Effects Analysis
FMEDA	Failure Modes Effects and Diagnostic Analysis
HFT	Hardware Fault Tolerance
IGBT	Insulated Gate Bipolar Transistor
Moon	M out of N Channel Architecture
MooND	M out of N Channel Architecture with Diagnostics
MTBF	Mean Time Between Failures
MTTF	Mean Time To Failure
MRT	Mean Repair Time
MTTR	Mean Time to Restoration
HTF	Hardware Fault Tolerance
PDS (SR)	Safety Related Adjustable Speed Electrical Power Drive System
PFD	Probability of Dangerous on Demand
PFD ${ }_{\text {avg }}$	Average Probability of Dangerous on Demand
PFH	Probability of Dangerous Failure per Hour
PL	Performance Level
PLr	Required Performance Level
SFF	Safe Failure Fraction
SIL	Safety Integrity Level
STO	Stop Torque Off
SRS	Safety Requirements Specification
T1	Proof Test Interval
β	CCF Factor

2.2 Mode of Operation (refered from EN 61800-5-2)

Low Demand Mode:

Where the frequency of demands for operation made on a safety-related system is no greater than one per year and no grater than twice the proof-test frequency

High Demand Mode (Continuous Mode):

Where the frequency of demands for operation made on a safety-related system is greater than one per year or greater than twice the proof-test frequency.

* The low demand mode of operation is not generally considered to be relevant for PDS (SR) application. Therefore, PDS (SR) is only considered to operate in the high demand or continuous mode.

Table - Safety Integrity Levels - Target Failure Measures for a Safety Function Operating in High Demand Mode of Operation of Continuous Mode of Operation

SIL	Average Frequency of a Dangerous Failure of the Safety Function $\left[\mathrm{h}^{-1}\right]$
4	$\geq 10-9$ to $<10-8$
3	$\geq 10-8$ to $<10-7$
2	$\geq 10-7$ to $<10-6$
1	$\geq 10-6$ to $<10-5$

2.3 Type A and Type B Subsystems (refered from EN 61800-5-2)

Type A:
subsystem can be regarded as type A if, for the components required to achieve the safety function:
a) The failure modes of all constituent components are well defined; and
b) The behaviour of the subsystem under fault conditions can be completely determined; and
c) There is sufficient dependable failure data from field experience to show that the claimed failure rates for detected and undetected dangerous failures are met.

Type B:

A Subsystem shall be regarded as type B if, for the components required to achieve the safety function, one or more of the criteria of type A is not satisfied.
2.4 Maximum Allowable Safety Integrity Level for a Safety Function Carried out by a Type A Safety Related Element of Subsysten (refered from EN 61508-2)

SFF	HTF N		
	0	1	2
$<60 \%$	SIL 1	SIL 2	SIL 3
60% to $<90 \%$	SIL 2	SIL 3	SIL 4
90% to $<99 \%$	SIL 3	SIL 3	SIL 4
$\geq 99 \%$	SIL 3	SIL 4	SIL 4

2.5 Maximum Allowable Safety Integrity Level for a Safety Function Carried out by a Type B Safety Related Element of Subsysten (refered from EN 61508-2)

SFF	HTF N		
	0	1	2
$<60 \%$	N/A	SIL 1	SIL 2
60% to $<90 \%$	SIL 1	SIL 2	SIL 3
90% to $<99 \%$	SIL 2	SIL 3	SIL 4
$\geq 99 \%$	SIL 3	SIL 4	SIL 4

3. Failure Modes

Component	Failure Mode	Typical Failure Mode Ratios \%
Switch with positive opening on demand, for example push button, emergency stop device, position switches, cam operated, selector switches	Contacts will not open	20
	Contacts will not close	80
Electromechanical position switch, limit switch, manually operated switch, etc. (not positively opening on demand)	Contacts will not open	50
	Contacts will not close	50
Relay	All contacts remain in the energized position when the coil is de-energized	25
	All contacts remain in the deenergized position when the coil is energized	25
	Contacts will not open	10
	Contacts will not close	10
	Simultaneous short circuit between three contacts of a change-over contact	10
	Simultaneous closing of normally open and normally closed contacts	10
	Short circuit between two pairs of contacts and/or between contacts and coil terminal	10
Circuit Breaker, Differential Circuit Breaker, Residual Current Device	All contacts remain in the energized position when the coil is de-energized	25
	All contacts remain in the deenergized position when the coil is energized	25
	Contacts will not open	10
	Contacts will not close	10
	Simultaneous short circuit between three contacts of a change-over contact	10
	Simultaneous closing of normally open and normally closed contacts	10
	Short circuit between two pairs of contacts and/or between contacts and coil terminal	10
Contactor	All contacts remain in the energized position when the coil is de-energized	25
	All contacts remain in the deenergized position when the coil is energized	25
	Contacts will not open	10
	Contacts will not close	10
	Simultaneous short circuit between three contacts of a change-over contact	10
	Simultaneous closing of normally open and normally closed contacts	10
	Short Circuit Between Two Pairs of Contacts and/or Between Contacts and Coil Terminal	10
Diode, General	Short Circuit	50
	Open Circuit	30
	Parameter Change	20
Fuse	Fails to Blow (Short Circuit)	20
	Open circuit	80

Proximity Switch	Permanently low resistance at output	25
	Permanently high resistance at output	25
	Interruption in power supply	30
	No operation of switch due to mechanical failure	10
	Simultaneous short circuit between three contacts of a change-over contact	10
Temperature Switch	Contacts will not close	30
	Contacts will not open	10
	Short circuits between adjacent contacts	10
	Simultaneous short circuit between three terminals of change-over contacts	10
	Faulty sensor	20
	Change of the detection or output characteristic	20
Pressure Switch	Contacts will not close	30
	Contacts will not open	10
	Short circuits between adjacent contacts	10
	Simultaneous short circuit between three terminals of change-over contacts	10
	Faulty sensor	20
	Change of the detection or output characteristic	20
Solenoid Valve	Does not energize	5
	Does not de-energize	15
	Change of switching times	5
	Leakage	65
	Other failure modes	10
Transformer	Open circuit of individual winding	5
	Short circuit between different windings	15
	Short circuit in one winding	5
	Change in effective turns ratio	65
Inductances	Open circuit	80
	Short circuit	10
	Random change of value	10
Resistors	Open circuit	80
	Short circuit	10
	Random change of value	10
Resistor networks	Open circuit	70
	Short circuit	10
	Short circuit between all connections	10
	Random change of value	10
Potentiometers	Open circuit of individual connection	70
	Short circuit between all connections	10
	Short circuit between any two connections	10
	Random change of value	10

Connector / Connection	Open	61
	Poor Contact / Intermittent	23
	Short	16
Capacitors	Open Circuit	40
	Short Circuit	40
	Random Change of Value	10
	Changing value tan α	10
Electronic components - Discrete semiconductors (e.g. Diodes, Zener diodes, Transistors, Triacs, Thyristors, Voltage regulators, Quartz Crystal, Phototransistors, Light-Emitting Diodes [LEDs])	Open Circuit of Any Connection	25
	Short Circuit between Any Two Connections	25
	Short Circuit between All Connections	25
	Change in Characteristics	25
Non-programmable integrated circuits (noncomplex, i.e. less than 1000 gates and/or less than 24 pins, operational amplifiers, shift registers, and hybrid modules)	Open Circuit of Any Connection	20
	Short Circuit between Any Two Connections	20
	"Stuck at" Faults	20
	Parasitic Oscillation of Outputs	20
	Changing Values (e.g. Input/Output Voltage of Analogue Device)	20
Microcircuit, Memory, MOS	Data Bit Loss	34
	Short Circuit between Any Two Adjacent Pins	26
	Open Circuit of Individual Connector Pins	23
	Slow Transfer of Data	17
Opto-Couplers	Open Circuit of Individual Connection	30
	Short Circuit between Any Two Input Connections	30
	Short Circuit between Any Two Output Connections	30
	Short Circuit between Any Two Connections of Input and Output	10
Plug and Socket, Multi-Pin Connector	Short Circuit between Any Two Adjacent Pins	10
	Short Circuit of Any Conductor to An Exposed Conductive Part	10
	Open Circuit of Individual Connector Pins	80
Transistor, Bipolar	Short Circuit	73
	Open Circuit	27
Terminal block	Short Circuit between Adjacent Terminals	10
	Open Circuit of Individual Terminals	90
NOTE 1 This data has been derived from a number of industry sources including: MIL-HDBK 217F(Notice 2) Reliability Prediction of Electronic Equipment (28-02-95), Parts Stress Analysis MIL-HDBK 217F(Notice 2) Reliability Prediction of Electronic Equipment (28-02-95), Appendix A, Parts Count Reliability Prediction SN 29500 Part 7, Failure Rates of Components, Expected Values for Relays, April 1992 SN 29500 Part 11, Failure Rates of Components, Expected Values for Contactors, August 1990 The documents in the SN 29500 series are publicly available and can be obtained from: Siemens AG, CT SR SI Otto-Hahn-Ring 6 D-81739 München NOTE 2 Electrical failure modes taken from Tables D. 5 of ISO 13849-2. Mechanical failure modes (where applicable) are taken from Annexes A, B and C of ISO 13849-2. NOTE 3 For a number of electrical/electronic components, for example resistors and capacitors, different designs may have a different distribution of failure modes from those given in the table. Failure Mode/Mechanism Distribution FMD-91, RAC 1991		

Part Name	λ ref (FIT)
Resistor (Carbon Film - $\leq 100 \mathrm{kOhm}$)	0.3
Resistor (Carbon Film - > 100 kOhm)	1
Resistor (Metal film)	0.2
Resistor (Networks (film circuits) per resistor element - Standard)	0.1
Resistor (Networks (film circuits) per resistor element - Custom Design)	0.5
Resistor (Metal-Oxide)	5
Resistor (Wire-Wound)	5
Resistor (Variable)	30
Capacitor (Metal foil - Polystyrol)	1
Capacitor (Metal foil - Polypropylene)	1
Catacitor (Metal foil - Polycarbonate)	2
Catacitor (Metal foil - Polyethylene terephtalate)	1
Capacitor (Metallized film - Polyethylene terephtalate)	0.7
Capacitor (Metallized film - Polycarbonate)	0.7
Capacitor (Metallized film - Polypropylene)	0.7
Capacitor (Metallized film - Acetyl cellulose)	0.7
Capacitor (Metallized paper (film))	2
Capacitor (Mica)	1
Capacitor (Glass)	2
Capacitor (Ceramic - COG, NPO)	1
Capacitor (Ceramic - X7R, X5R)	2
Capacitor (Ceramic - $\mathrm{Z5U}, \mathrm{Y} 5 \mathrm{~V}, \mathrm{Y4T}$)	5
Capacitor (Aluminium electrolytic - non solid electrolyte)	5
Capacitor (Aluminium electrolytic - solid electrolyte)	3
Capacitor (Tantalum electrolytic - non solid electrolyte)	10
Capacitor (Tantalum electrolytic- solid electrolyte)	1
Connector (Clamp)	0.5
Connector (Press in)	0.25
Connector (Screw)	0.5
Connector (Terminal Point)	0.25
Connector (Wire-Warp)	0.25
Diode (Universal)	1
Diode (Schottky)	1
Diode (Suppressor)	1
Diode (Reference)	7
Diode (Zenor, Ptot < 1kW)	1
Diode (Zenor, Power)	25
Inductor (Inductor for EMC Applications - $\leq 3 \mathrm{~A}$)	1.5
Inductor (Inductor for EMC Applications - > 3A)	3
Inductor (Low frequencey inductors and transformers - $\leq 25 \mathrm{kHz}$)	3
Inductor (High frequencey inductors and transformers -> 25 kHz)	5
Inductor (Main transformers and transformers for switched-mode power supplies)	10
LED Visible Light (Radial and SMT)	1.5
LED Visible Light (Large Power Packages > 100 mA DC)	4
LED IRED (GaAs)	2
LED IRED (InP)	20
Microproessors (Bipolar, Number of Gate : below 1k, Number of Transistors: Below 5k)	50
Microproessors (NMOS, Number of Gate : below 1k, Number of Transistors: Below 5 k)	50
Microproessors (NMOS, Number of Gate : 1k ~ 10 k, Number of Transistors: 5k ~ 50k)	60
Microproessors (NMOS, Number of Gate : 10k ~ 100 k , Number of Transistors: 50k $\sim 500 \mathrm{k}$)	100
Microproessors (CMOS, Number of Gate : below 1k, Number of Transistors: Below 5k)	25
Microproessors (CMOS, Number of Gate : $1 \mathrm{k} \sim 10 \mathrm{k}$, Number of Transistors: $5 \mathrm{k} \sim 50 \mathrm{k}$)	30
Microproessors (CMOS, Number of Gate : 10k ~ 100 k, Number of Transistors: 50k ~ 500k)	50
Microproessors (CMOS, Number of Gate : 100k $\sim 1000 \mathrm{k}$, Number of Transistors: 500k $\sim 5 \mathrm{M}$)	80
Microproessors (CMOS, Number of Gate : 1M ~ 10M, Number of Transistors: 5M ~ 50M)	120
Microproessors (CMOS, Number of Gate : 10M ~ 100M, Number of Transistors: 50M ~ 500M)	150
Microproessors (BICMOS, Number of Gate : $100 \mathrm{k} \sim 1 \mathrm{M}$, Number of Transistors: $500 \mathrm{k} \sim 5 \mathrm{M}$)	50

Varistors	1
PTC Thermistors (Measuring Applications)	5
PTC Thermistors (Heating and Starting Applications)	5
NTC Thermistors	3
Surge Arresters	1
Ceramic Resonators	5
Filters	10
Filters (Surface Wave Filters - SAW)	20
Filters (Surface Wave Oscillators - SAW-Oscillators)	30
Filters (Voltage Controlled Oscillators - VCO)	40
Piezoelectric Components (transducers and sensors)	30
Crystals	15
Crystal Oscillators (Clock)	30
Crystal Oscillators (Voltage controlled)	60
Crystal Oscillators (Temperature compensated)	100
Crystal Oscillators (Oven controlled)	200
Feed-through Capacitors	5
Feed-through Filters	5
Fuses	25
Optocouplers (with Bipolar Output)	15
Optocouplers (with FET Output)	40
Optocouplers (with Subsequent Electronics)	20
Optocouplers (with Subsequent Power Electronics)	40
Light Barrier (with Diode Output/Transistor Output)	50
Light Barrier (with Subsequent Electronics)	65
RAM (Bipolor)	50
PROM (Bipolar)	60
RAM (MOS , CMOS and BICMOS)	50
ROM Mask (MOS , CMOS and BICMOS)	50
EPROM, OTPROM (MOS ,CMOS and BICMOS)	30
FLASH (MOS , CMOS and BICMOS)	30
EEPROM, EAROM (MOS ,CMOS and BICMOS)	30
Hermetically Sealed Relays with Twin Contacts in Inert Gases or Mercury Wetted Contacts (with Monitoring)	0.5
Hermetically Sealed Relays with Twin Contacts in Inert Gases or Mercury Wetted Contacts (without Monitoring)	1
Plastic Sealed Relays with Low Outgasing, Tempered Plastic and Twin Contacs made of Noble Metals and Their Alloys	2
Open and Dust-Tight Relays with Twin Contacts Made of Noble Metals and Their Alloys	4
Dust-Tight Relays with Single Contacts with Contact Alloys on a Silver Basis, with or without Gold Coating	5
Open and Dust-Tight Relays with Single Contacts on a Silver Basis	1
Transistor (Bipolar, Universal)	3
Transistor (Bipolar, Arrays)	12
Transistor (Bipolar, Low Power)	20
Transistor (Bipolar, Power)	60
Transistor (FET - Sperrschicht / Junction)	5
Transistor (FET - MOS)	5
Transistor (MOS, Leistung / Power, SIPMOS) e.g. TO3, TO220, D(D)-Pack	60
Transistor (IGBT Leistung / Power) e.g. TO3, TO220, D(D)-Pack	60
Intergrated Circuits (For EMC Applicatoins)	3
IGBT-Module	70
ASIC, Full Custom, Gate Arrays, A/D Converters (Bipolar - TTL)	30
ASIC, Full Custom, Gate Arrays, A/D Converters (Bipolar - ECL)	60
ASIC, Full Custom, Gate Arrays, A/D Converters (Bipolar - HV)	40
ASIC, Full Custom, Gate Arrays, A/D Converters (NMOS)	30
Inductor (Low Frequency Inductors and Transformers)	3
Inductor (High Frequency Inductors and Transformers)	5
Inductor (Main Transformers and Transformers for Switched Modes and Power Supplies)	10
Regulators and Power Amplifiers	25

5. SYSTEM DESIGN

5.1 System Feature

The safety function is a safety torque off (STO) function used to prevent a torque and to block the power supply to the motor by interrupting the gate using hard wires.

The STO function is independently connected to each input signal for 2 channels (SE(SFT11) and SP(SFT2)). The connected circuit cuts off the operation signal for the inverter output and turns off the power modules.
If the safety function is activated during operation, the inverter blocks the output and the motor enters Free Run mode. Also, the "Safety Opt Err" message is displayed on the keypad. To release the fault trip, short-circuit terminal block to return to the normal operation status and press the [STOP/RESET] key.

5.2 Block Diagram

5.2.1 STO Part

5.2.2 PS/VM Part

6. Part List

7. COMMON CAUSE FAILURES (CCF) AND β VALUE

Below Table is derived from EN 62061:2005/AC:2010, Table F. 1 - Criteria for Estimation of CCF
Table F. 1 - Criteria for Estimation of CCF

No.	Item	Y/N	Score
Separation / Segregation			
1a	Are SRECS signal cables for the individual channels routed separately from other channels at all positions or sufficiently shielded?	Y	5
1b	Where information encoding/decoding is used, is it sufficient for the detection of signa transmission errors?	N	10
2	Are SRECS signal and electrical energy power cables separate at all positions or sufficiently shielded?	Y	5
3	If subsystem elements can contribute to a CCF, are they provided as physically separate devices in their local enclosures?	N	5
Diversity/Redundancy			
4	Does the subsystem employ different electrical technologies for example, one electronic or programmable electronic and the other an electromechanical relay?	N	8
5	Does the subsystem employ elements that use different physical principles (e.g. sensing elements at a guard door that use mechanical and magnetic sensing techniques)?	N	10
6	Does the subsystem employ elements with temporal differences in functional operation and/or failure modes?	N	10
7	Do the subsystem elements have a diagnostic test interval of $\leq 1 \mathrm{~min}$?	Y	10
Complexity/Design/Application			
8	Is cross-connection between channels of the subsystem prevented with the exception of that used for diagnostic testing purposes?	N	2
Assessment/Analysis			
9	Have the results of the failure modes and effects analysis been examined to establish sources of common cause failure and have predetermined sources of common cuase failure been eliminated by design?	Y	9
10	Are field failures analysed with feedback into the design?	Y	9
Competence/Training			
11	Do subsystem designers understand the causes and consequences of common caus failures?	Y	4
Environmental Control			
12	Are the subsystem elements likely to operate always within the range of temperature, humidity, corrosion, dust, vibration, etc. over which it has been tested, without the use of external environmental control?	Y	9
13	Is the subsystem immune to adverse influences from electromagnetic interference up to and including the limits specified in Annex E?	Y	9
NOTE An alternative item (e.g. references 1a and 1b) is given in Table F. 1 where it is intended that a claim can be made for a contribution towards avoidance of CCF from only the most relevant item.			

Table F. 2 - Estimation of CCF factor (β)

Overall Score :ommon Cause Failure Factor (f	Score and $\boldsymbol{\beta}$ Value	
<35	$10 \%(0.1)$	N/A
$35-65$	$5 \%(0.05)$	Score: $\mathbf{6 0}, \boldsymbol{\beta}: \mathbf{5} \%(\mathbf{0 . 0 5})$
$65-85$	$2 \%(0.02)$	N/A
$85-100$	$1 \%(0.01)$	N/A

. 1 Factors Relating SIL Grade

Asd of STO Circuit (Detected Safety Failure)	Asu of STO Circuit (Safety Undetected Failure)	$\lambda d d$ of STO Circuit (Dangerous Detected Failure	$\lambda d u$ of STO Circuit (Unetected. Dangerous Failure)	λ s of STO Circuit (Safety Failure $=\lambda s d+\lambda s u)$ $\lambda s d+\lambda s u$	$\lambda \mathrm{d}$ of STO Circuit (Dangerous Failure $=\lambda d d+\lambda d u)$	$\begin{aligned} & \text { DC of STO Circuit } \\ & \begin{array}{c} \text { (Diagnostic Coverage } \\ =\lambda d d / \lambda d) \end{array} \end{aligned}$	$\begin{gathered} \text { SFF of STO Circuit } \\ \begin{array}{c} \text { S(Safe Failure Fraction) } \\ =(\lambda s+\lambda d d) /(\lambda s+\lambda d)) \end{array} . \end{gathered}$
46.31	79.10	26.95	0.00	125.41	26.95	100.00	83.47\%
$\begin{aligned} & \text { \sd of PSNM Circuit } \\ & \text { (Detected Safity Failure) } \end{aligned}$	®su of PSNM Circuir (Safety Undetected Failure)	$\lambda d d$ of PS/VM Circuit (Dangerous Detected Failure)	$\lambda \mathrm{du}$ of PS/VM Circuit (Unetected Dangerous Failure	λ s of STO Circuit (Safety Failure $=\lambda s d+\lambda s u)$ $\lambda s d+\lambda s u$	$\lambda \mathrm{d}$ of STO Circuit (Dangerous Failure $=\lambda d d+\lambda d u)$	$\begin{gathered} \text { DC of STO Circuit } \\ \text { (Diagnostic Coverage } \\ =\lambda \mathrm{dd} / \lambda \mathrm{d}) \end{gathered}$	$\begin{aligned} & \text { SFF of PSNM Circuit } \\ & \text { (Safe Failure Fraction) } \\ & =(\lambda s+\lambda \mathrm{dd}) /(\lambda s+\lambda \mathrm{d}) \text {) } \end{aligned}$
0.00	155.47	0.00	9.07	95.47	9.07	0.00	91.32\%
Asd of Total Circuit (Detected Safety Failure)	$\begin{gathered} \lambda \text { su of Total Circuit } \\ \text { (Safety Undetected Failure) } \end{gathered}$	入dd of Total Circuit Dangerous Detected Failure)	入du of Total Circuit (Unetected Dangerous Failure	λ s of STO Circuit $=\lambda s d+\lambda s u)$ $=\lambda s d+\lambda s t$	$\lambda \mathrm{d}$ of STO Circuit (Dangerous Failure $=\lambda d d+\lambda d u$)	$\begin{gathered} \text { DC of STO Circuit } \\ \begin{array}{c} \text { (Diagnostic Coverage } \\ =\lambda \mathrm{dd} / / \mathrm{d}) \end{array} \end{gathered}$	$\begin{gathered} \text { SFF of Total Circuit } \\ \text { (Safe Failure Fraction) } \\ =(\lambda s+\lambda d d) /(\lambda s+\lambda d)) \end{gathered}$
0.00	234.57	0.00	9.07	220.88	36.02	25.00	N/A

7.2 Maximum Allowable SIL Grade

Table 2 of EN 61508 --2- Maximum allowable safety integrity level for a safety function carried out by a type A safety-related element or subsystem

Safe Failure Fraction of an Element (STO)	Hardware Fault Tolerance			Safe Failure Fraction of an Element (PS/VM)	Hardware Fault Tolerance		
	0	1	2		0	1	2
< 60 \%	SIL 1	SIL 2	SIL 3	< 60%	SIL 1	SIL 2	SIL 3
60\% - <90\%	SIL 2	SIL 3	SIL 4	60\% - <90\%	SIL 2	SIL 3	SIL 4
90\% - < 99%	SIL 3	SIL 4	SIL 4	90\% - < 99%	SIL 3	SIL 4	SIL 4
$\geq 99 \%$	SIL 3	SIL 4	SIL 4	$\geq 99 \%$	SIL 3	SIL 4	SIL 4

Table 3 of EN 61508-2- Maximum allowable safety integrity level for a safety function carried out by a type B safety-related element or subsystem

Safe Failure Fraction of an Element (STO)	Hardware Fault Tolerance			Safe Failure Fraction of an Element (PS/VM)	Hardware Fault Tolerance		
	0	1	2		0	1	2
< 60 \%	Not Allowed	SIL 1	SIL 2	< 60%	Not Allowed	SIL 1	SIL 2
60\% - < 90\%	SIL 1	SIL 2	SIL 3	60\% - < 90\%	SIL 1	SIL 2	SIL 3
90\% - < 99%	SIL 2	SIL 3	SIL 4	90\% - <99\%	SIL 2	SIL 3	SIL 4
$\geq 99 \%$	SIL 3	SIL 4	SIL 4	$\geq 99 \%$	SIL 3	SIL 4	SIL 4

7.3 Summary

The system istype B and have 1 of Hardware Fault Tolerance, and designed as 2002 of IEC 61508 -6.
The FMEDA result shows thatSFF of STO and PSNM circuit are 83.47% and 91.32%, therefore the circuit canreach up to SIL 2 as according to Table 2 of EN $61508-2$.
Total 1 d of STO and PSNM Circuit is 36.02 FIT and, PFHd is 72.04 FIT (7.2×10^{8}) by formula of IEC $61508-6$
This system can be reached toSIL 2 , according to the table in EN $61508-1$ and calculation result of SFF.

Safety Integrity Level	
4	$\geq 10^{-9}$ to $<10^{-8}$
3	$\geq 10^{-8}$ to $<10^{-7}$
2	$\geq 10^{-7}$ to $<10^{-6}$
1	$\geq 10^{-6}$ to $<10^{-5}$

